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carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), black carbon aerosol (BC), and 
oxygenated VOCs such as formaldehyde (HCHO), along with any hydrocarbons that escape combustion.  
These emissions drive secondary formation of ozone and aerosol particulate matter. 

     Atmospheric Impacts. Emissions from oil and gas extraction affect climate via radiative forcing by 
CH4 and affect air quality via the ozone-forming potential of CH4 and VOCs (Schnell et al., Gilman et al.) 
combined with reactive nitrogen oxides and sunlight.  Emissions of known carcinogens (e.g., C6H6), other 
air toxics (e.g., H2S, HCHO), and aerosols (directly emitted BC, and secondary production of additional 
particulate matter) can further degrade local and even regional air quality (Stohl et al.).  The climate and 
air quality benefits of burning natural gas as a cleaner, lower-carbon alternative to coal (Alvarez et al., 
Howarth et al., Cathles et al., de Gouw et al.) can be offset by leaks of CH4 and by the degradation of air 
quality in oil and gas production regions.  Formulating scientifically sound policy requires a better 
understanding of the atmospheric impacts of oil and gas extraction and processing, so that any net climate 
and air quality benefits can be weighed quantitatively against unwanted atmospheric impacts. 

     A Way Forward. Field measurements are needed to quantify atmospheric emissions and determine 
the actual climate and air quality impacts of oil and gas production and processing at a time when national 
emissions, and emission inventories, are evolving.  EPA has reported a nationwide average atmospheric 
leak rate of CH4 equal to 0.16% of total CH4 production from natural gas fields in 2010, increasing to 
1.4% in 2011-2012, and then decreasing to 0.88% in 2012 (U.S. EPA, 2013).  These are based on bottom-
up inventory methods developed decades ago and applied with little modification to all modern fields.  
Rapid growth in the number and size of new production regions, and increased production from older 
regions, by the use of new drilling technology has outstripped the ability of inventories to quantify current 
emissions and track potential changes over time.  The goal of this field measurement and modeling effort 
is to improve the accuracy of bottom-up inventory tabulations used to estimate atmospheric emissions. 

In contrast to the single nationwide average value in the EPA inventory, top-down assessments based 
on atmospheric measurements by NOAA suggest that CH4 emissions vary widely between fields.  Recent 
NOAA-led studies indicate leak rates of 4% of production in the Denver-Julesburg basin (Petron et al.), 
and 9% of production in the Uintah basin (Karion et al.).  Across the U.S., analysis of NOAA data 

showed CH4 emissions from oil 
and gas production and 
processing are significantly larger 
than inventories suggest, calling 
into question the recent decrease 
in the U.S. EPA inventory value 
(Miller et al.) and further pointing 
to the need for an independent 
evaluation of these inventories. 

Field measurements have 
quantified CH4 emissions for only 
a few of the major oil and gas 
production regions in the U.S. 
(Figure 2).  Given the variability 
from region to region noted 
above, additional measurements 
in large, currently unsurveyed 
regions (e.g., Bakken in North 
Dakota; Eagle Ford in Texas; 
Marcellus in Pennsylvania; San 
Juan in New Mexico) are 
especially needed to better 

Figure'2.'Field'studies'are'needed'to'quantify'climate'and'air'quality'
impacts'of'emissions'from'major'U.S.'hydrocarbon'production'regions. 
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carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), black carbon aerosol (BC), and 
oxygenated VOCs such as formaldehyde (HCHO), along with any hydrocarbons that escape combustion.  
These emissions drive secondary formation of ozone and aerosol particulate matter. 

     Atmospheric Impacts. Emissions from oil and gas extraction affect climate via radiative forcing by 
CH4 and affect air quality via the ozone-forming potential of CH4 and VOCs (Schnell et al., Gilman et al.) 
combined with reactive nitrogen oxides and sunlight.  Emissions of known carcinogens (e.g., C6H6), other 
air toxics (e.g., H2S, HCHO), and aerosols (directly emitted BC, and secondary production of additional 
particulate matter) can further degrade local and even regional air quality (Stohl et al.).  The climate and 
air quality benefits of burning natural gas as a cleaner, lower-carbon alternative to coal (Alvarez et al., 
Howarth et al., Cathles et al., de Gouw et al.) can be offset by leaks of CH4 and by the degradation of air 
quality in oil and gas production regions.  Formulating scientifically sound policy requires a better 
understanding of the atmospheric impacts of oil and gas extraction and processing, so that any net climate 
and air quality benefits can be weighed quantitatively against unwanted atmospheric impacts. 

     A Way Forward. Field measurements are needed to quantify atmospheric emissions and determine 
the actual climate and air quality impacts of oil and gas production and processing at a time when national 
emissions, and emission inventories, are evolving.  EPA has reported a nationwide average atmospheric 
leak rate of CH4 equal to 0.16% of total CH4 production from natural gas fields in 2010, increasing to 
1.4% in 2011-2012, and then decreasing to 0.88% in 2012 (U.S. EPA, 2013).  These are based on bottom-
up inventory methods developed decades ago and applied with little modification to all modern fields.  
Rapid growth in the number and size of new production regions, and increased production from older 
regions, by the use of new drilling technology has outstripped the ability of inventories to quantify current 
emissions and track potential changes over time.  The goal of this field measurement and modeling effort 
is to improve the accuracy of bottom-up inventory tabulations used to estimate atmospheric emissions. 

In contrast to the single nationwide average value in the EPA inventory, top-down assessments based 
on atmospheric measurements by NOAA suggest that CH4 emissions vary widely between fields.  Recent 
NOAA-led studies indicate leak rates of 4% of production in the Denver-Julesburg basin (Petron et al.), 
and 9% of production in the Uintah basin (Karion et al.).  Across the U.S., analysis of NOAA data 
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in the U.S. EPA inventory value 
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Field measurements have 
quantified CH4 emissions for only 
a few of the major oil and gas 
production regions in the U.S. 
(Figure 2).  Given the variability 
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above, additional measurements 
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High winter ozone pollution from carbonyl
photolysis in an oil and gas basin
Peter M. Edwards1,2{, Steven S. Brown1, James M. Roberts1, Ravan Ahmadov1,2, Robert M. Banta1, Joost A. deGouw1,2,
William P. Dubé1,2, Robert A. Field3, James H. Flynn4, Jessica B. Gilman1,2, Martin Graus1,2{, Detlev Helmig5, Abigail Koss1,2,
Andrew O. Langford1, Barry L. Lefer4, Brian M. Lerner1,2, Rui Li1,2, Shao-Meng Li6, Stuart A. McKeen1,2, Shane M. Murphy3,
David D. Parrish1, Christoph J. Senff1,2, Jeffrey Soltis3, Jochen Stutz7, Colm Sweeney1,2, Chelsea R. Thompson5, Michael K. Trainer1,
Catalina Tsai7, Patrick R. Veres1,2, Rebecca A. Washenfelder1,2, Carsten Warneke1,2, Robert J. Wild1,2, Cora J. Young1{, Bin Yuan1,2

& Robert Zamora1

The United States is now experiencing the most rapid expansion in
oil and gas production in four decades, owing in large part to imple-
mentation of new extraction technologies such as horizontal dril-
ling combined with hydraulic fracturing. The environmental impacts
of this development, from its effect on water quality1 to the influence
of increased methane leakage on climate2, have been a matter of intense
debate. Air quality impacts are associated with emissions of nitro-
gen oxides3,4 (NOx 5 NO 1 NO2) and volatile organic compounds5–7

(VOCs), whose photochemistry leads to production of ozone, a sec-
ondary pollutant with negative health effects8. Recent observations
in oil- and gas-producing basins in the western United States have
identified ozone mixing ratios well in excess of present air quality
standards, but only during winter9–13. Understanding winter ozone
production in these regions is scientifically challenging. It occurs
during cold periods of snow cover when meteorological inversions
concentrate air pollutants from oil and gas activities, but when solar
irradiance and absolute humidity, which are both required to initi-
ate conventional photochemistry essential for ozone production, are
at a minimum. Here, using data from a remote location in the oil
and gas basin of northeastern Utah and a box model, we provide a
quantitative assessment of the photochemistry that leads to these
extreme winter ozone pollution events, and identify key factors that
control ozone production in this unique environment. We find that
ozone production occurs at lower NOx and much larger VOC con-
centrations than does its summertime urban counterpart, leading
to carbonyl (oxygenated VOCs with a C5O moiety) photolysis as a
dominant oxidant source. Extreme VOC concentrations optimize
the ozone production efficiency of NOx. There is considerable poten-
tial for global growth in oil and gas extraction from shale. This anal-
ysis could help inform strategies to monitor and mitigate air quality
impacts and provide broader insight into the response of winter ozone
to primary pollutants.

One of the key scientific challenges in understanding winter ozone
(O3) is determining the source of the radicals (gas-phase molecules with
an unpaired electron that react rapidly with VOCs) required to initiate
and sustain oxidation cycles. Quantifying these sources is essential for
understanding the individual roles of NOx and VOCs during these O3
pollution episodes and for the design of mitigation strategies9,14. By far
the largest radical source in the lower atmosphere is the photolysis of
O3 itself, which produces a small yield of electronically excited oxygen
atoms, O(1D), some of which react with water vapour to produce hydrox-
yl (OH) radicals15. During mid-latitude winter, both ultraviolet light and,
especially, water vapour are far less abundant than in summer, leading
to a 15- to 60-fold decrease in primary OH production through this

mechanism16,17. The seasonal cycle in mid-latitude OH production is
responsible for the summertime maxima in urban O3 but presents a
conundrum for understanding winter O3 events (Fig. 1).

The Uintah Basin Winter Ozone Studies (UBWOS) were a set of field
intensives (large sets of air and radiation measurements occurring for
a limited duration, typically weeks to months) at a remote location
(40.1437uN, 109.4680uW) within the oil and gas basin of northeastern
Utah (Fig. 1) during January and February of 2012, 2013 and 2014, moti-
vated by observations of high O3 in two preceding years. Winter O3 is

1NOAA Earth System Research Laboratory, Boulder, Colorado 80305, USA. 2Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA.
3Department of Atmospheric Science, University of Wyoming, Larmie, Wyoming 82070, USA. 4Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA. 5Institute
of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309, USA. 6Air Quality Research Division, Environment Canada, Toronto, Ontario M3H 5T4, Canada. 7Department of Oceanic and
Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California 90095, USA. {Present addresses: Department of Chemistry, University of York, York YO10 5DD, UK (P.M.E.); Institute of
Meteorology and Geophysics, University of Innsbruck, Innsbruck, 6020 Austria (M.G.); Department of Chemistry, Memorial University of Newfoundland, St John’s, Newfoundland A1B 3X7, Canada (C.J.Y.).
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Figure 1 | Seasonal cycle of O3 in the Uintah Basin, Utah and the Los
Angeles Basin, California in 2013. a, Digital elevation map (elevation
indicated by colour scale) of the Uintah Basin showing oil and gas wells
(grey dots), O3 monitors (red circles) urban centres (yellow squares) and the
site of the field intensives (Horsepool, blue diamond). b, Graphs at left show
daily maximum 8-h average O3 for 2013 at Ouray, Utah, a remote site in the
Uintah Basin (population 50,000), and Riverside, California, an urban receptor
site in the eastern Los Angeles Basin, a region with 18 million residents. Graphs
at right show data sorted by increasing O3 mixing ratio, together with the
number of days in excess of the US national ambient air quality standard
(75 p.p.b.v., 8 h average; black dashed line). In 2013, O3 exceedances were more
frequent and greater in severity at Ouray than at Riverside, despite the large
difference in population.
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carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), black carbon aerosol (BC), and 
oxygenated VOCs such as formaldehyde (HCHO), along with any hydrocarbons that escape combustion.  
These emissions drive secondary formation of ozone and aerosol particulate matter. 

     Atmospheric Impacts. Emissions from oil and gas extraction affect climate via radiative forcing by 
CH4 and affect air quality via the ozone-forming potential of CH4 and VOCs (Schnell et al., Gilman et al.) 
combined with reactive nitrogen oxides and sunlight.  Emissions of known carcinogens (e.g., C6H6), other 
air toxics (e.g., H2S, HCHO), and aerosols (directly emitted BC, and secondary production of additional 
particulate matter) can further degrade local and even regional air quality (Stohl et al.).  The climate and 
air quality benefits of burning natural gas as a cleaner, lower-carbon alternative to coal (Alvarez et al., 
Howarth et al., Cathles et al., de Gouw et al.) can be offset by leaks of CH4 and by the degradation of air 
quality in oil and gas production regions.  Formulating scientifically sound policy requires a better 
understanding of the atmospheric impacts of oil and gas extraction and processing, so that any net climate 
and air quality benefits can be weighed quantitatively against unwanted atmospheric impacts. 

     A Way Forward. Field measurements are needed to quantify atmospheric emissions and determine 
the actual climate and air quality impacts of oil and gas production and processing at a time when national 
emissions, and emission inventories, are evolving.  EPA has reported a nationwide average atmospheric 
leak rate of CH4 equal to 0.16% of total CH4 production from natural gas fields in 2010, increasing to 
1.4% in 2011-2012, and then decreasing to 0.88% in 2012 (U.S. EPA, 2013).  These are based on bottom-
up inventory methods developed decades ago and applied with little modification to all modern fields.  
Rapid growth in the number and size of new production regions, and increased production from older 
regions, by the use of new drilling technology has outstripped the ability of inventories to quantify current 
emissions and track potential changes over time.  The goal of this field measurement and modeling effort 
is to improve the accuracy of bottom-up inventory tabulations used to estimate atmospheric emissions. 

In contrast to the single nationwide average value in the EPA inventory, top-down assessments based 
on atmospheric measurements by NOAA suggest that CH4 emissions vary widely between fields.  Recent 
NOAA-led studies indicate leak rates of 4% of production in the Denver-Julesburg basin (Petron et al.), 
and 9% of production in the Uintah basin (Karion et al.).  Across the U.S., analysis of NOAA data 

showed CH4 emissions from oil 
and gas production and 
processing are significantly larger 
than inventories suggest, calling 
into question the recent decrease 
in the U.S. EPA inventory value 
(Miller et al.) and further pointing 
to the need for an independent 
evaluation of these inventories. 

Field measurements have 
quantified CH4 emissions for only 
a few of the major oil and gas 
production regions in the U.S. 
(Figure 2).  Given the variability 
from region to region noted 
above, additional measurements 
in large, currently unsurveyed 
regions (e.g., Bakken in North 
Dakota; Eagle Ford in Texas; 
Marcellus in Pennsylvania; San 
Juan in New Mexico) are 
especially needed to better 

Figure'2.'Field'studies'are'needed'to'quantify'climate'and'air'quality'
impacts'of'emissions'from'major'U.S.'hydrocarbon'production'regions. 
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2011:	
  	
  Nitrogen,	
  Aerosol	
  ComposiYon,	
  and	
  Halogens	
  on	
  a	
  Tall	
  Tower	
  (NACHTT)	
  

2012–14:	
  	
  Uintah	
  Basin	
  Winter	
  Ozone	
  Studies	
  (UBWOS)	
  -­‐	
  co-­‐led	
  with	
  GMD	
  

2013:	
  	
  Southeast	
  Nexus	
  (SENEX)	
  

2014:	
  	
  Twin	
  Oher	
  Projects	
  Defining	
  Oil/gas	
  Well	
  emissioNs	
  (TOPDOWN)	
  -­‐	
  co-­‐led	
  with	
  GM	
  

2015:	
  	
  Shale	
  Oil	
  and	
  Natural	
  Gas	
  Nexus	
  (SONGNEX) 	
  	
  	
  ß	
  currently	
  ac9ve	
  

See	
  talks	
  by	
  	
  
Jessica	
  Gilman,	
  4-­‐2	
  
Jim	
  Roberts,	
  4-­‐3	
  
Christoph	
  Senff,	
  4-­‐4	
  
Ravan	
  Ahmadov,	
  4-­‐5	
  

 Denver 

 Ft. Collins 

Denver-Julesburg Basin
over 30,000 oil & gas wells 

 Boulder 

Summer:	
  	
  Oil	
  &	
  gas	
  contributes	
  about	
  half	
  of	
  
the	
  iniYal	
  VOC	
  reacYvity	
  leading	
  to	
  O3	
  

formaYon	
  in	
  the	
  Denver	
  non-­‐ahainment	
  area	
  

Gilman	
  et	
  al.,	
  ES&T,	
  2013	
  

CSD	
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  results	
  

Winter:	
  	
  Remarkably	
  high	
  O3	
  values	
  observed	
  
in	
  oil	
  &	
  gas	
  producYon	
  regions	
  in	
  the	
  rural	
  

western	
  U.S.	
  	
  	
  

Edwards	
  et	
  al.,	
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  2014	
  


